Сообщения.

Астрономия

Астроно́мия (др.-греч. ἀστρονομία, от ἄστρον — звезда и νόμος — закон) — наука о движении, строении и развитии небесных тел и их систем, вплоть до Вселенной в целом.[1] В частности, астрономия изучает Солнце, планеты Солнечной системы и их спутники, астероиды, кометы, метеориты, межпланетное вещество, звёзды и внесолнечные планеты (экзопланеты), туманности, межзвёздное вещество, галактики и их скопления, пульсары, квазары, чёрные дыры и многое другое.

2009 год был объявлен ООН Международным годом астрономии (IYA2009). Основной упор делается на повышении общественной заинтересованности и понимании астрономии.

Структура астрономии как научной дисциплины

Лунная астрономия: большой кратер на изображении — Дедал, сфотографированный экипажем Аполлона-11 во время обращения вокруг Луны в 1969. Кратер расположен рядом с центром невидимой стороны Луны, его диаметр около 93 км.
Внегалактическая астрономия: гравитационное линзирование. Это изображение показывает несколько голубых петлеобразных объектов, которые являются многократными изображениями одной галактики, размноженными из-за эффекта гравитационной линзы от скопления жёлтых галактик возле центра фотографии. Линза создана гравитационным полем скопления, которое искривляет световые лучи, что ведёт к увеличению и искажению изображения более далёкого объекта.

Современная астрономия подразделяется на ряд отдельных разделов, которые тесно связаны между собой, и такое разделение астрономии в известном смысле условно. Главнейшими разделами астрономии являются:

  • Астрометрия — изучает видимые положения и движения светил. На этапе исторического развития науки роль астрометрии долгое время состояла также в высокоточном определении географических координат и времени с помощью изучения движения небесных светил (в данный момент для того и другого существуют новейшие способы). Современная астрометрия состоит из:
    • фундаментальной астрометрии, задачами которой являются определение координат небесных тел из наблюдений, составление каталогов звёздных положений и определение числовых значений астрономических параметров, — величин, позволяющих учитывать закономерные изменения координат светил;
    • радиоастрономии
    • сферической астрономии, разрабатывающей математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем;
  • Теоретическая астрономия даёт методы для определения орбит небесных тел по их видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел по известным элементам их орбит (обратная задача).
  • Небесная механика изучает законы движений небесных тел под действием сил всемирного тяготения, определяет массы и форму небесных тел и устойчивость их систем.

Эти три раздела в основном решают первую задачу астрономии (исследование движения небесных тел), и их часто называют классической астрономией.

  • Астрофизика изучает строение, физические свойства и химический состав небесных объектов. Она делится на: а) практическую (наблюдательную) астрофизику, в которой разрабатываются и применяются практические методы астрофизических исследований и соответствующие инструменты и приборы; б) теоретическую астрофизику, в которой, на основании законов физики, даются объяснения наблюдаемым физическим явлениям.

Ряд разделов астрофизики выделяется по специфическим методам исследования.

  • Звёздная астрономия изучает закономерности пространственного распределения и движения звёзд, звёздных систем и межзвёздной материи с учётом их физических особенностей.

В этих двух разделах в основном решаются вопросы второй задачи астрономии (строение небесных тел).

  • Космогония рассматривает вопросы происхождения и эволюции небесных тел, в том числе и нашей Земли.
  • Космология изучает общие закономерности строения и развития Вселенной.

На основании всех полученных знаний о небесных телах последние два раздела астрономии решают её третью задачу (происхождение и эволюция небесных тел).

Курс общей астрономии содержит систематическое изложение сведений об основных методах и главнейших результатах, полученных различными разделами астрономии.

Одним из новых, сформировавшихся только во второй половине XX века, направлений является археоастрономия, которая изучает астрономические познания древних людей и помогает датировать древние сооружения, исходя из явления прецессии Земли.

 Звёздная астрономия

Планетарная туманность Муравья — Mz3. Выброс газа из умирающей центральной звезды показывает симметричную модель, в отличие от хаотических образов обычных взрывов.
Основная статья: Звезда

Изучение звёзд и звёздной эволюции имеет фундаментальное значение для нашего понимания Вселенной. Астрофизика звезд развивалась на основе наблюдений и теоретического понимания, а сейчас и с помощью компьютерного моделирования.

Формирование звезд происходит в областях плотной пыли и газа, известных как гигантские молекулярные облака. Если происходит дестабилизация, то фрагменты облака могут сжаться под воздействием гравитации и сформировать протозвезду. Достаточно плотные и горячие области вызовут термоядерные реакции, таким образом начнется главная последовательность звезды.[2]

Почти все элементы, более тяжелые чем водород и гелий, создаются внутри ядра звезды.

Задачи астрономии

Радиотелескопы среди множества различных инструментов, используемых астрономами.

Основными задачами астрономии являются:

  1. Изучение и объяснение видимых движений небесных тел, нахождение закономерностей и причин этих движений.
  2. Изучение строения небесных тел, их физических и химических свойств, построение моделей их внутреннего строения.
  3. Решение проблем происхождения и развития небесных тел и их систем.
  4. Изучение наиболее общих свойств Вселенной, построение теории наблюдаемой части Вселенной — Метагалактики.

Решение этих задач требует создания эффективных методов исследования — как теоретических, так и практических. Первая задача решается путём длительных наблюдений, начатых ещё в глубокой древности, а также на основе законов механики, известных уже около 300 лет. Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для сравнительно близких к Земле небесных тел: Луны, Солнца, планет, астероидов и т. д.

Решение второй задачи стало возможным в связи с появлением спектрального анализа и фотографии. Изучение физических свойств небесных тел началось во второй половине XIX века, а основных проблем — лишь в последние годы.

Третья задача требует накопления наблюдаемого материала. В настоящее время таких данных ещё недостаточно для точного описания процесса происхождения и развития небесных тел и их систем. Поэтому знания в этой области ограничиваются только общими соображениями и рядом более или менее правдоподобных гипотез.

Четвёртая задача является самой масштабной и самой сложной. Практика показывает, что для её решения уже недостаточно существующих физических теорий. Необходимо создание более общей физической теории, способной описывать состояние вещества и физические процессы при предельных значениях плотности, температуры, давления. Для решения этой задачи требуются наблюдательные данные в областях Вселенной, находящихся на расстояниях в несколько миллиардов световых лет. Современные технические возможности не позволяют детально исследовать эти области. Тем не менее, эта задача сейчас является наиболее актуальной и успешно решается астрономами ряда стран, в том числе и России.

 История астрономии

Основная статья: История астрономии

Ещё в глубокой древности люди интересовались движением светил по небосводу, хотя астрономия тогда была основательно перемешана с астрологией. Окончательное выделение научной астрономии произошло в эпоху Возрождения и заняло долгое время.

 

воскресенье, 26 декабря 2010 г.

Статус

Основная статья: Планета
Международный астрономический союз присвоил Плутону статус планеты в мае 1930 года (тогда предполагалось, что Плутон сравним с Землёй). Однако, начиная с 1992 года, когда был открыт первый объект в поясе Койпера (15760) 1992 QB1, этот статус подвергался сомнениям. Открытия других объектов в поясе Койпера лишь усилили дебаты.

 Плутон как планета

На пластинках, отправившихся с зондами «Пионер-10» и «Пионер-11» в начале 1970-х, Плутон ещё упоминается в качестве планеты Солнечной системы. Эти пластинки из анодированного алюминия, отправленные с аппаратами в дальний космос с надеждой, что они будут обнаружены представителями внеземных цивилизаций, должны им дать представление о девяти планетах Солнечной системы[95]. Отправившиеся с подобным посланием в тех же 1970-х «Вояджер-1» и «Вояджер-2» также несли с собой информацию о Плутоне как о девятой планете Солнечной системы[96]. Что интересно: персонаж диснеевских мультфильмов — Плуто, впервые появившийся на экранах в 1930, был назван в честь этой планеты[97].
В 1943 году Гленн Сиборг назвал недавно созданный элемент плутонием в честь Плутона, в соответствии с традицией обозначать недавно открытые элементы в честь недавно обнаруженных планет: уран в честь Урана, нептуний в честь Нептуна, церий в честь считавшейся малой планетой Цереры и палладий в честь малой планеты Паллада[98].

 Дебаты 2000-х годов

Сравнительные размеры крупнейших ТНО и Земли.
Изображения объектов — ссылки на статьи.
В 2002 году был обнаружен Квавар, с диаметром приблизительно 1280 км — примерно половина диаметра Плутона[99]. В 2004 году была открыта Седна с верхними пределами для диаметра в 1800 км, тогда как диаметр Плутона 2320 км[100]. Так же как Церера потеряла в своё время статус планеты после открытия других астероидов, так, в конечном счёте, и статус Плутона должен был быть пересмотрен в свете открытия других подобных ему объектов в поясе Койпера.
29 июля 2005 года было объявлено об открытии нового транснептунового объекта, который получил имя Эрида. Как считалось до недавнего времени[101][102], он несколько крупнее Плутона[103]. Это был наибольший объект, открытый за орбитой Нептуна после спутника Нептуна Тритона в 1846 году. Первооткрыватели Эриды и пресса первоначально назвали её «десятая планета», хотя в то время никакого консенсуса по этому вопросу не было[104]. Другие члены астрономического сообщества считали открытие Эриды сильнейшим аргументом в пользу перевода Плутона в разряд малых планет[105]. Последним отличительным признаком Плутона оставался его крупный спутник Харон и его атмосфера. Эти особенности, скорее всего, не уникальны для Плутона: у нескольких других транснептуновых объектов есть спутники, а спектральный анализ Эриды предполагает схожий с Плутоном состав поверхности, что делает вероятным и наличие схожей атмосферы[106]. Эрида также обладает и спутником — Дисномией, открытой в сентябре 2005 года. Директора музеев и планетариев, начиная с открытия объектов в поясе Койпера, иногда создавали противоречивые ситуации, исключая Плутон из планетарной модели Солнечной системы. Так, например, в планетарии Хейдена, открытом после реконструкции в 2000 году в Нью-Йорке, на Централ-Парк-Уэст, Солнечная система была представлена состоящей из 8 планет. Эти разногласия были широко освещены в печати[107].

 Решение МАС повторно классифицировать Плутон

В решающую стадию дебаты о статусе Плутона перешли в 2006 году с решением МАС сформировать официальное определение для термина «планета». Согласно принятому решению, есть три главных условия для объекта, который претендует на статус планеты:
  1. Он должен обращаться по орбите вокруг Солнца.
  2. Он должен быть достаточно массивным, чтобы принять форму гидростатического равновесия (сферическую) под действием своих гравитационных сил.
  3. Он должен расчистить окрестности своей орбиты (то есть он должен быть гравитационной доминантой и рядом не должно быть других тел сравнимого размера, кроме его собственных спутников или находящихся под его гравитационным воздействием)[108][109].
Плутон не удовлетворяет третьему условию, так как его масса составляет всего лишь 0,07 от массы всех объектов на его орбите. Для сравнения, масса Земли в 1,7 млн раз больше всех остальных тел на её орбите[110][111]. МАС решил отнести Плутон одновременно к двум категориям объектов — к карликовым планетам и как прототип для транснептуновых объектов под общим названием «плутино», среди которых он был бы одновременно отдельным, хотя и классифицированным членом[112]. 13 сентября 2006 года МАС включил Плутон и Эриду с её спутником Дисномией в каталог малых планет, дав им официальные обозначения «(134340) Плутон», «(136199) Эрида» и «(136199) Эрида I Дисномия»[113]. Если бы Плутон получил статус малой планеты сразу после открытия, то его номер был бы среди первых тысяч, а не после более чем 100 000. Первая после открытия Плутона малая планета была обнаружена месяц спустя, ею стала 1164 Кобольда; таким образом, Плутон мог бы иметь номер 1164. Среди астрономического сообщества наблюдалось некоторое сопротивление переклассификации Плутона[114][115][116]. Алан Стерн — ответственный исследователь миссии НАСА «New Horizons» — публично высмеял решение МАС, заявив: «по техническим причинам определение никуда не годится»[117]. Стерн сказал, что, если уж применять это определение к Земле, Марсу, Юпитеру и Нептуну, разделяющих свои орбиты с астероидами, то и их пришлось бы переклассифицировать и лишать текущего статуса[118]. Он также заявил, что так как проголосовало меньше 5 % астрономов, решение нельзя считать мнением всего астрономического сообщества[118]. Марк Буи из Лоуэлловской обсерватории, являющийся одним из противников переклассифицированного Плутона, высказал своё мнение на собственном веб-сайте[119]. Решение МАС переклассифицировать поддержал Майкл Браун, астроном, обнаруживший Эриду. Он сказал: «Несмотря на эту больше похожую на цирк сумасшедшую процедуру, мы, так или иначе, наткнулись на ответ. Это потребовало немало времени. В конечном счёте, наука самокорректируется, даже если в обсуждении были сильные эмоции»[120].
Дети выступают против переклассификации, полиция присматривает за порядком
Широкая публика по-разному восприняла утерю Плутоном статуса планеты. Большинство спокойно приняли это решение, некоторые же ходатайствовали МАС в онлайн-режиме, стараясь убедить астрономов его пересмотреть. Некоторые члены законодательного собрания штата Калифорния осудили решение МАС, назвав его научной ересью[121]. Палата представителей штата Нью-Мексико объявила, что в честь Клайда Томбо (он многие годы жил в этом штате и работал в университете) в Нью-Мексико Плутон всегда будет считаться планетой и с 13 марта 2006 года каждый год в штате будет проходить так называемый «день планеты Плутон»[122]. Немало людей не приняли решение МАС по сентиментальным причинам, так как они всю жизнь знали Плутон как планету и продолжают так считать вне зависимости от решений МАС[123]. Опросы среди американцев свидетельствуют о том, что многие из них настроены против решения также и потому, что Плутон вплоть до лишения статуса был единственной планетой, открытой американцем[124].
11 июня 2008 года МАС объявил о введении понятия плутоид. К плутоидам были отнесены карликовые планеты Плутон и Эрида, а позднее — Макемаке и Хаумеа. Карликовая планета Церера плутоидом не является[125][126].

 «Оплутонить»

Американское диалектологическое общество признало глагол «to pluto» («оплутонить») «новым словом 2006 года». Новый глагол означает «понижение в звании или ценности кого-либо или чего-либо, как это произошло с теперь уже бывшей планетой Плутон»[127].

 Статус Плутона в законодательстве Иллинойса

В марте 2009 года сенат штата Иллинойс[128] принял решение, что Плутон будет считаться в штате планетой, а день 13 марта будет в штате днём Плутона[

Комментариев нет:

Отправить комментарий