Сообщения.

Астрономия

Астроно́мия (др.-греч. ἀστρονομία, от ἄστρον — звезда и νόμος — закон) — наука о движении, строении и развитии небесных тел и их систем, вплоть до Вселенной в целом.[1] В частности, астрономия изучает Солнце, планеты Солнечной системы и их спутники, астероиды, кометы, метеориты, межпланетное вещество, звёзды и внесолнечные планеты (экзопланеты), туманности, межзвёздное вещество, галактики и их скопления, пульсары, квазары, чёрные дыры и многое другое.

2009 год был объявлен ООН Международным годом астрономии (IYA2009). Основной упор делается на повышении общественной заинтересованности и понимании астрономии.

Структура астрономии как научной дисциплины

Лунная астрономия: большой кратер на изображении — Дедал, сфотографированный экипажем Аполлона-11 во время обращения вокруг Луны в 1969. Кратер расположен рядом с центром невидимой стороны Луны, его диаметр около 93 км.
Внегалактическая астрономия: гравитационное линзирование. Это изображение показывает несколько голубых петлеобразных объектов, которые являются многократными изображениями одной галактики, размноженными из-за эффекта гравитационной линзы от скопления жёлтых галактик возле центра фотографии. Линза создана гравитационным полем скопления, которое искривляет световые лучи, что ведёт к увеличению и искажению изображения более далёкого объекта.

Современная астрономия подразделяется на ряд отдельных разделов, которые тесно связаны между собой, и такое разделение астрономии в известном смысле условно. Главнейшими разделами астрономии являются:

  • Астрометрия — изучает видимые положения и движения светил. На этапе исторического развития науки роль астрометрии долгое время состояла также в высокоточном определении географических координат и времени с помощью изучения движения небесных светил (в данный момент для того и другого существуют новейшие способы). Современная астрометрия состоит из:
    • фундаментальной астрометрии, задачами которой являются определение координат небесных тел из наблюдений, составление каталогов звёздных положений и определение числовых значений астрономических параметров, — величин, позволяющих учитывать закономерные изменения координат светил;
    • радиоастрономии
    • сферической астрономии, разрабатывающей математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем;
  • Теоретическая астрономия даёт методы для определения орбит небесных тел по их видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел по известным элементам их орбит (обратная задача).
  • Небесная механика изучает законы движений небесных тел под действием сил всемирного тяготения, определяет массы и форму небесных тел и устойчивость их систем.

Эти три раздела в основном решают первую задачу астрономии (исследование движения небесных тел), и их часто называют классической астрономией.

  • Астрофизика изучает строение, физические свойства и химический состав небесных объектов. Она делится на: а) практическую (наблюдательную) астрофизику, в которой разрабатываются и применяются практические методы астрофизических исследований и соответствующие инструменты и приборы; б) теоретическую астрофизику, в которой, на основании законов физики, даются объяснения наблюдаемым физическим явлениям.

Ряд разделов астрофизики выделяется по специфическим методам исследования.

  • Звёздная астрономия изучает закономерности пространственного распределения и движения звёзд, звёздных систем и межзвёздной материи с учётом их физических особенностей.

В этих двух разделах в основном решаются вопросы второй задачи астрономии (строение небесных тел).

  • Космогония рассматривает вопросы происхождения и эволюции небесных тел, в том числе и нашей Земли.
  • Космология изучает общие закономерности строения и развития Вселенной.

На основании всех полученных знаний о небесных телах последние два раздела астрономии решают её третью задачу (происхождение и эволюция небесных тел).

Курс общей астрономии содержит систематическое изложение сведений об основных методах и главнейших результатах, полученных различными разделами астрономии.

Одним из новых, сформировавшихся только во второй половине XX века, направлений является археоастрономия, которая изучает астрономические познания древних людей и помогает датировать древние сооружения, исходя из явления прецессии Земли.

 Звёздная астрономия

Планетарная туманность Муравья — Mz3. Выброс газа из умирающей центральной звезды показывает симметричную модель, в отличие от хаотических образов обычных взрывов.
Основная статья: Звезда

Изучение звёзд и звёздной эволюции имеет фундаментальное значение для нашего понимания Вселенной. Астрофизика звезд развивалась на основе наблюдений и теоретического понимания, а сейчас и с помощью компьютерного моделирования.

Формирование звезд происходит в областях плотной пыли и газа, известных как гигантские молекулярные облака. Если происходит дестабилизация, то фрагменты облака могут сжаться под воздействием гравитации и сформировать протозвезду. Достаточно плотные и горячие области вызовут термоядерные реакции, таким образом начнется главная последовательность звезды.[2]

Почти все элементы, более тяжелые чем водород и гелий, создаются внутри ядра звезды.

Задачи астрономии

Радиотелескопы среди множества различных инструментов, используемых астрономами.

Основными задачами астрономии являются:

  1. Изучение и объяснение видимых движений небесных тел, нахождение закономерностей и причин этих движений.
  2. Изучение строения небесных тел, их физических и химических свойств, построение моделей их внутреннего строения.
  3. Решение проблем происхождения и развития небесных тел и их систем.
  4. Изучение наиболее общих свойств Вселенной, построение теории наблюдаемой части Вселенной — Метагалактики.

Решение этих задач требует создания эффективных методов исследования — как теоретических, так и практических. Первая задача решается путём длительных наблюдений, начатых ещё в глубокой древности, а также на основе законов механики, известных уже около 300 лет. Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для сравнительно близких к Земле небесных тел: Луны, Солнца, планет, астероидов и т. д.

Решение второй задачи стало возможным в связи с появлением спектрального анализа и фотографии. Изучение физических свойств небесных тел началось во второй половине XIX века, а основных проблем — лишь в последние годы.

Третья задача требует накопления наблюдаемого материала. В настоящее время таких данных ещё недостаточно для точного описания процесса происхождения и развития небесных тел и их систем. Поэтому знания в этой области ограничиваются только общими соображениями и рядом более или менее правдоподобных гипотез.

Четвёртая задача является самой масштабной и самой сложной. Практика показывает, что для её решения уже недостаточно существующих физических теорий. Необходимо создание более общей физической теории, способной описывать состояние вещества и физические процессы при предельных значениях плотности, температуры, давления. Для решения этой задачи требуются наблюдательные данные в областях Вселенной, находящихся на расстояниях в несколько миллиардов световых лет. Современные технические возможности не позволяют детально исследовать эти области. Тем не менее, эта задача сейчас является наиболее актуальной и успешно решается астрономами ряда стран, в том числе и России.

 История астрономии

Основная статья: История астрономии

Ещё в глубокой древности люди интересовались движением светил по небосводу, хотя астрономия тогда была основательно перемешана с астрологией. Окончательное выделение научной астрономии произошло в эпоху Возрождения и заняло долгое время.

 

воскресенье, 26 декабря 2010 г.

Плутон (карликовая планета)

Плутон Pluto symbol.svg
Pluto-map-hs-2010-06-c180.jpg
Изображение Плутона, созданное на основе снимков космического телескопа «Хаббл»
Сведения об открытии
Дата открытия 18 февраля 1930
Первооткрыватель Клайд Томбо
Орбитальные характеристики
(Эпоха J2000.0)
Афелий 7 375 927 931 км
49,30503287 а. е.
Перигелий 4 436 824 613 км
29,65834067 а. е.
Большая полуось 5 906 376 272 км
39,48168677 а. е.
эксцентриситет орбиты 0,24880766
Период обращения 90 613,3055 дней
248,09 лет
Синодический период 366,73 дней
Орбитальная скорость 4,666 км/с
Средняя аномалия
Наклонение 17,14175°
11,88° к экватору Солнца
Долгота восходящего узла 110,30347°
Аргумент перигелия 113,76329°
Спутников 3
Физические характеристики
Экваториальный радиус 1195 км[1]
0,19 радиуса Земли
Полярный радиус 1195 км
Площадь поверхности 1,795×107 км²
0,033 площади Земли
Объём 7,15×109 км³
0,0066 объёма Земли
Масса (1,305 ± 0,007)×1022 кг[2]
0,0021 массы Земли
Средняя плотность 2,03 ± 0,06 г/см³[2]
Ускорение свободного падения на экваторе 0,58 м/с² (0,059 g)
Вторая космическая скорость 1,2 км/c
Период сидерического вращения 6,387230 сид. дней
6 дней 9 ч 17 мин 36 с
Скорость вращения на экваторе 0,01310556 км/с
47,18 км/ч
Наклон оси вращения планеты 119,591 ± 0,014°[2]
Прямое восхождение на северном полюсе 133,046 ± 0,014°
Склонение −6,145 ± 0,014°
Альбедо 0,49 (Бонд)
0,66 (геом.) (изменение в 35 %)
Температура поверхности, К мин.•сред.•макс.
33 • 44 • 55(-240—218 °C)
Видимая звёздная величина до 13,65
(среднее 15,1)
Угловой размер 0,065 — 0,115"
Атмосфера
Давление на поверхности 0,30 Па (летний максимум)
Состав азот, метан
Плуто́н (134340 Pluto) — крупнейшая по размерам, наряду с Эридой, карликовая планета Солнечной системы и девятое/десятое по величине небесное тело, обращающееся вокруг Солнца[3][4][5]. Первоначально Плутон классифицировался как планета, однако сейчас он считается одним из крупнейших объектов (возможно, самым крупным) в поясе Койпера[6].
Как и большинство объектов в поясе Койпера, Плутон состоит в основном из горных пород и льда и он относительно мал: его масса меньше массы Луны в пять раз, а объём — в три раза. У орбиты Плутона большой эксцентриситет и большой наклон относительно плоскости эклиптики.
Из-за эксцентриситета орбиты Плутон то приближается к Солнцу на расстояние 29,6 а. е. (4,4 млрд км), оказываясь к нему ближе Нептуна, то удаляется на 49,3 а. е. (7,4 млрд км). Плутон и его крупнейший спутник Харон часто рассматриваются в качестве двойной планеты, поскольку барицентр их системы находится вне обоих объектов[7]. Международный астрономический союз (МАС) заявил о намерении дать формальное определение для двойных карликовых планет, а до этого момента Харон классифицируется как спутник Плутона[8]. У Плутона имеются также два меньших спутника — Никта и Гидра — которые были открыты в 2005 году[9].
Со дня своего открытия в 1930 и до 2006 года Плутон считался девятой планетой Солнечной системы. Однако в конце XX и начале XXI веков во внешней части Солнечной системы было открыто множество объектов. Среди них примечательны Квавар, Седна и особенно Эрида, которая на 27 % массивнее Плутона[10]. 24 августа 2006 года МАС впервые дал определение термину «планета». Плутон не попадал под это определение, и МАС причислил его к новой категории карликовых планет вместе с Эридой и Церерой[11]. После переклассификации Плутон был добавлен к списку малых планет и получил  (англ.) 134340 по каталогу Центра малых планет (ЦМП)[12][13]. Некоторые учёные продолжают считать, что Плутон должен быть переклассифицирован обратно в планету[14].
В честь Плутона был назван химический элемент плутоний[15].

Комментариев нет:

Отправить комментарий