Сообщения.

Астрономия

Астроно́мия (др.-греч. ἀστρονομία, от ἄστρον — звезда и νόμος — закон) — наука о движении, строении и развитии небесных тел и их систем, вплоть до Вселенной в целом.[1] В частности, астрономия изучает Солнце, планеты Солнечной системы и их спутники, астероиды, кометы, метеориты, межпланетное вещество, звёзды и внесолнечные планеты (экзопланеты), туманности, межзвёздное вещество, галактики и их скопления, пульсары, квазары, чёрные дыры и многое другое.

2009 год был объявлен ООН Международным годом астрономии (IYA2009). Основной упор делается на повышении общественной заинтересованности и понимании астрономии.

Структура астрономии как научной дисциплины

Лунная астрономия: большой кратер на изображении — Дедал, сфотографированный экипажем Аполлона-11 во время обращения вокруг Луны в 1969. Кратер расположен рядом с центром невидимой стороны Луны, его диаметр около 93 км.
Внегалактическая астрономия: гравитационное линзирование. Это изображение показывает несколько голубых петлеобразных объектов, которые являются многократными изображениями одной галактики, размноженными из-за эффекта гравитационной линзы от скопления жёлтых галактик возле центра фотографии. Линза создана гравитационным полем скопления, которое искривляет световые лучи, что ведёт к увеличению и искажению изображения более далёкого объекта.

Современная астрономия подразделяется на ряд отдельных разделов, которые тесно связаны между собой, и такое разделение астрономии в известном смысле условно. Главнейшими разделами астрономии являются:

  • Астрометрия — изучает видимые положения и движения светил. На этапе исторического развития науки роль астрометрии долгое время состояла также в высокоточном определении географических координат и времени с помощью изучения движения небесных светил (в данный момент для того и другого существуют новейшие способы). Современная астрометрия состоит из:
    • фундаментальной астрометрии, задачами которой являются определение координат небесных тел из наблюдений, составление каталогов звёздных положений и определение числовых значений астрономических параметров, — величин, позволяющих учитывать закономерные изменения координат светил;
    • радиоастрономии
    • сферической астрономии, разрабатывающей математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем;
  • Теоретическая астрономия даёт методы для определения орбит небесных тел по их видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел по известным элементам их орбит (обратная задача).
  • Небесная механика изучает законы движений небесных тел под действием сил всемирного тяготения, определяет массы и форму небесных тел и устойчивость их систем.

Эти три раздела в основном решают первую задачу астрономии (исследование движения небесных тел), и их часто называют классической астрономией.

  • Астрофизика изучает строение, физические свойства и химический состав небесных объектов. Она делится на: а) практическую (наблюдательную) астрофизику, в которой разрабатываются и применяются практические методы астрофизических исследований и соответствующие инструменты и приборы; б) теоретическую астрофизику, в которой, на основании законов физики, даются объяснения наблюдаемым физическим явлениям.

Ряд разделов астрофизики выделяется по специфическим методам исследования.

  • Звёздная астрономия изучает закономерности пространственного распределения и движения звёзд, звёздных систем и межзвёздной материи с учётом их физических особенностей.

В этих двух разделах в основном решаются вопросы второй задачи астрономии (строение небесных тел).

  • Космогония рассматривает вопросы происхождения и эволюции небесных тел, в том числе и нашей Земли.
  • Космология изучает общие закономерности строения и развития Вселенной.

На основании всех полученных знаний о небесных телах последние два раздела астрономии решают её третью задачу (происхождение и эволюция небесных тел).

Курс общей астрономии содержит систематическое изложение сведений об основных методах и главнейших результатах, полученных различными разделами астрономии.

Одним из новых, сформировавшихся только во второй половине XX века, направлений является археоастрономия, которая изучает астрономические познания древних людей и помогает датировать древние сооружения, исходя из явления прецессии Земли.

 Звёздная астрономия

Планетарная туманность Муравья — Mz3. Выброс газа из умирающей центральной звезды показывает симметричную модель, в отличие от хаотических образов обычных взрывов.
Основная статья: Звезда

Изучение звёзд и звёздной эволюции имеет фундаментальное значение для нашего понимания Вселенной. Астрофизика звезд развивалась на основе наблюдений и теоретического понимания, а сейчас и с помощью компьютерного моделирования.

Формирование звезд происходит в областях плотной пыли и газа, известных как гигантские молекулярные облака. Если происходит дестабилизация, то фрагменты облака могут сжаться под воздействием гравитации и сформировать протозвезду. Достаточно плотные и горячие области вызовут термоядерные реакции, таким образом начнется главная последовательность звезды.[2]

Почти все элементы, более тяжелые чем водород и гелий, создаются внутри ядра звезды.

Задачи астрономии

Радиотелескопы среди множества различных инструментов, используемых астрономами.

Основными задачами астрономии являются:

  1. Изучение и объяснение видимых движений небесных тел, нахождение закономерностей и причин этих движений.
  2. Изучение строения небесных тел, их физических и химических свойств, построение моделей их внутреннего строения.
  3. Решение проблем происхождения и развития небесных тел и их систем.
  4. Изучение наиболее общих свойств Вселенной, построение теории наблюдаемой части Вселенной — Метагалактики.

Решение этих задач требует создания эффективных методов исследования — как теоретических, так и практических. Первая задача решается путём длительных наблюдений, начатых ещё в глубокой древности, а также на основе законов механики, известных уже около 300 лет. Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для сравнительно близких к Земле небесных тел: Луны, Солнца, планет, астероидов и т. д.

Решение второй задачи стало возможным в связи с появлением спектрального анализа и фотографии. Изучение физических свойств небесных тел началось во второй половине XIX века, а основных проблем — лишь в последние годы.

Третья задача требует накопления наблюдаемого материала. В настоящее время таких данных ещё недостаточно для точного описания процесса происхождения и развития небесных тел и их систем. Поэтому знания в этой области ограничиваются только общими соображениями и рядом более или менее правдоподобных гипотез.

Четвёртая задача является самой масштабной и самой сложной. Практика показывает, что для её решения уже недостаточно существующих физических теорий. Необходимо создание более общей физической теории, способной описывать состояние вещества и физические процессы при предельных значениях плотности, температуры, давления. Для решения этой задачи требуются наблюдательные данные в областях Вселенной, находящихся на расстояниях в несколько миллиардов световых лет. Современные технические возможности не позволяют детально исследовать эти области. Тем не менее, эта задача сейчас является наиболее актуальной и успешно решается астрономами ряда стран, в том числе и России.

 История астрономии

Основная статья: История астрономии

Ещё в глубокой древности люди интересовались движением светил по небосводу, хотя астрономия тогда была основательно перемешана с астрологией. Окончательное выделение научной астрономии произошло в эпоху Возрождения и заняло долгое время.

 

воскресенье, 26 сентября 2010 г.

Солнечная система

Планеты и Карликовые планеты Солнечной системы. (размеры для сравнения, расстояния не соблюдены)
Землеподобные планеты: Меркурий, Венера, Земля, Марс (размеры для сравнения, расстояния не соблюдены)
Четыре газовых гиганта: Юпитер, Сатурн, Уран, Нептун (размеры для сравнения, расстояния не соблюдены)
Основная статья: Солнечная система
Согласно текущему определению термина планета — которое дал МАС в Солнечной системе 8 планет и 5 карликовых планет. В порядке увеличения расстояния от Солнца планеты расположены так:
  1. ☿ Меркурий
  2. ♀ Венера
  3. ⊕ Земля
  4. ♂ Марс
  5. ♃ Юпитер
  6. ♄ Сатурн
  7. ♅ Уран
  8. ♆ Нептун
Юпитер самый крупный — его масса равна 318 земным. Меркурий самый маленький веся всего лишь 0,055 от земного. Планеты Солнечной системы можно разделить на 2 группы на основании их характеристик и состава:
  • Землеподобные. Планеты, похожие на Землю, с телами, в основе своей состоящими из горных пород: Меркурий, Венера, Земля и Марс. С массой в 0,055 от земной, Меркурий — самая маленькая планета земной группы (и вообще самая маленькая из известных на сегодняшний день планет) в Солнечной системе, тогда как Земля — самая крупная землеподобная планета в Солнечной системе.
  • Газовые гиганты. Планеты, в значительной степени состоящие из газа, и значительно более массивные, чем планеты земной группы: Юпитер, Сатурн, Уран и Нептун. Юпитер, с 318 земными массами — крупнейшая планета в Солнечной системе, хотя Сатурн не намного меньший, весит «всего» 95 земных масс.
  • Есть и так называемые карликовые планеты. До августа 2000 года несколько объектов, обнаруженных астрономами, были предложены к присвоению им статуса планет МАС. Однако в 2006 все эти объекты были определены как карликовые планеты — объекты, отличающиеся от планет. В настоящее время МАС признаёт 5 карликовых планет в Солнечной системе: Цереру, Плутон, Хаумеа, Макемаке и Эриду. Ещё несколько объектов пояса астероидов и пояса Койпера рассматриваются как текущие кандидаты, и ещё 50 косвенно подходят под определение. Возможно, когда пояс Койпера будет исследован полностью, таких объектов будет обнаружено до 200. Карликовые планеты во многом разделяют особенности планет, хотя и остаются известные различия — а именно то, что они недостаточно массивны, чтобы расчистить орбитальные окрестности в пределах их орбит. По определению все карликовые планеты члены какой-нибудь популяции. Церера — крупнейший объект в астероидном поясе, в то время как Плутон, Хаумеа и Макемаке — члены пояса Койпера, а Эрида — рассеянного диска. Учёные наподобие Майка Брауна уверены, что более 40 транснептуновых объектов будут впоследствии признаны МАС как карликовые планеты согласно действующему определению[61].
Сравнение планет и карликовых планет Солнечной системы
Класс Экваториальный
диаметр[a]
Масса[a] Большая полуось орбиты (а. е.) Период обращения
(лет)
Наклонение
к Солнечному экватору
(°)
Эксцентриситет орбиты Период вращения
(дней)
Спутники[c] Кольца Атмосфера
Планеты Земная группа Меркурий 0,382 0,06 0,39 0,24 3,38 0,206 58,64 нет минимальна
Венера 0,949 0,82 0,72 0,62 3,86 0,007 −243,02 нет CO2, N2
Земля[b] 1,00 1,00 1,00 1,00 7,25 0,017 1,00 1 нет N2, O2
Марс 0,532 0,11 1,52 1,88 5,65 0,093 1,03 2 нет CO2, N2
Газовые гиганты Юпитер 11,209 317,8 5,20 11,86 6,09 0,048 0,41 63 да H2, He
Сатурн 9,449 95,2 9,54 29,46 5,51 0,054 0,43 62 да H2, He
Уран 4,007 14,6 19,22 84,01 6,48 0,047 −0,72 27 да H2, He
Нептун 3,883 17,2 30,06 164,8 6,43 0,009 0,67 13 да H2, He
Карликовые планеты
Церера 0,08 0,000 2 2,5—3,0 4,60 10,59 0,080 0,38 0 нет нет
Плутон 0,19 0,002 2 29,7—49,3 248,09 17,14 0,249 −6,39 3 нет временная
Хаумеа 0,37×0,16 0,000 7 35,2—51,5 282,76 28,19 0,189 0,16 2
Макемаке ~0,12 0,000 7 38,5—53,1 309,88 28,96 0,159  ? 0  ?  ? [d]
Эрида 0,19 0,002 5 37,8—97,6 ~557 44,19 0,442 ~0,3 1  ?  ? [d]

a  Относительно Земли
b  См. статью Земля для точных данных
c  У Юпитера спутников известно больше, чем у любой другой планеты Солнечной системы (63)[62]
d  Как и у Плутона вблизи от перигелия — появляется временная атмосфера.

Комментариев нет:

Отправить комментарий