Сообщения.

Астрономия

Астроно́мия (др.-греч. ἀστρονομία, от ἄστρον — звезда и νόμος — закон) — наука о движении, строении и развитии небесных тел и их систем, вплоть до Вселенной в целом.[1] В частности, астрономия изучает Солнце, планеты Солнечной системы и их спутники, астероиды, кометы, метеориты, межпланетное вещество, звёзды и внесолнечные планеты (экзопланеты), туманности, межзвёздное вещество, галактики и их скопления, пульсары, квазары, чёрные дыры и многое другое.

2009 год был объявлен ООН Международным годом астрономии (IYA2009). Основной упор делается на повышении общественной заинтересованности и понимании астрономии.

Структура астрономии как научной дисциплины

Лунная астрономия: большой кратер на изображении — Дедал, сфотографированный экипажем Аполлона-11 во время обращения вокруг Луны в 1969. Кратер расположен рядом с центром невидимой стороны Луны, его диаметр около 93 км.
Внегалактическая астрономия: гравитационное линзирование. Это изображение показывает несколько голубых петлеобразных объектов, которые являются многократными изображениями одной галактики, размноженными из-за эффекта гравитационной линзы от скопления жёлтых галактик возле центра фотографии. Линза создана гравитационным полем скопления, которое искривляет световые лучи, что ведёт к увеличению и искажению изображения более далёкого объекта.

Современная астрономия подразделяется на ряд отдельных разделов, которые тесно связаны между собой, и такое разделение астрономии в известном смысле условно. Главнейшими разделами астрономии являются:

  • Астрометрия — изучает видимые положения и движения светил. На этапе исторического развития науки роль астрометрии долгое время состояла также в высокоточном определении географических координат и времени с помощью изучения движения небесных светил (в данный момент для того и другого существуют новейшие способы). Современная астрометрия состоит из:
    • фундаментальной астрометрии, задачами которой являются определение координат небесных тел из наблюдений, составление каталогов звёздных положений и определение числовых значений астрономических параметров, — величин, позволяющих учитывать закономерные изменения координат светил;
    • радиоастрономии
    • сферической астрономии, разрабатывающей математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем;
  • Теоретическая астрономия даёт методы для определения орбит небесных тел по их видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел по известным элементам их орбит (обратная задача).
  • Небесная механика изучает законы движений небесных тел под действием сил всемирного тяготения, определяет массы и форму небесных тел и устойчивость их систем.

Эти три раздела в основном решают первую задачу астрономии (исследование движения небесных тел), и их часто называют классической астрономией.

  • Астрофизика изучает строение, физические свойства и химический состав небесных объектов. Она делится на: а) практическую (наблюдательную) астрофизику, в которой разрабатываются и применяются практические методы астрофизических исследований и соответствующие инструменты и приборы; б) теоретическую астрофизику, в которой, на основании законов физики, даются объяснения наблюдаемым физическим явлениям.

Ряд разделов астрофизики выделяется по специфическим методам исследования.

  • Звёздная астрономия изучает закономерности пространственного распределения и движения звёзд, звёздных систем и межзвёздной материи с учётом их физических особенностей.

В этих двух разделах в основном решаются вопросы второй задачи астрономии (строение небесных тел).

  • Космогония рассматривает вопросы происхождения и эволюции небесных тел, в том числе и нашей Земли.
  • Космология изучает общие закономерности строения и развития Вселенной.

На основании всех полученных знаний о небесных телах последние два раздела астрономии решают её третью задачу (происхождение и эволюция небесных тел).

Курс общей астрономии содержит систематическое изложение сведений об основных методах и главнейших результатах, полученных различными разделами астрономии.

Одним из новых, сформировавшихся только во второй половине XX века, направлений является археоастрономия, которая изучает астрономические познания древних людей и помогает датировать древние сооружения, исходя из явления прецессии Земли.

 Звёздная астрономия

Планетарная туманность Муравья — Mz3. Выброс газа из умирающей центральной звезды показывает симметричную модель, в отличие от хаотических образов обычных взрывов.
Основная статья: Звезда

Изучение звёзд и звёздной эволюции имеет фундаментальное значение для нашего понимания Вселенной. Астрофизика звезд развивалась на основе наблюдений и теоретического понимания, а сейчас и с помощью компьютерного моделирования.

Формирование звезд происходит в областях плотной пыли и газа, известных как гигантские молекулярные облака. Если происходит дестабилизация, то фрагменты облака могут сжаться под воздействием гравитации и сформировать протозвезду. Достаточно плотные и горячие области вызовут термоядерные реакции, таким образом начнется главная последовательность звезды.[2]

Почти все элементы, более тяжелые чем водород и гелий, создаются внутри ядра звезды.

Задачи астрономии

Радиотелескопы среди множества различных инструментов, используемых астрономами.

Основными задачами астрономии являются:

  1. Изучение и объяснение видимых движений небесных тел, нахождение закономерностей и причин этих движений.
  2. Изучение строения небесных тел, их физических и химических свойств, построение моделей их внутреннего строения.
  3. Решение проблем происхождения и развития небесных тел и их систем.
  4. Изучение наиболее общих свойств Вселенной, построение теории наблюдаемой части Вселенной — Метагалактики.

Решение этих задач требует создания эффективных методов исследования — как теоретических, так и практических. Первая задача решается путём длительных наблюдений, начатых ещё в глубокой древности, а также на основе законов механики, известных уже около 300 лет. Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для сравнительно близких к Земле небесных тел: Луны, Солнца, планет, астероидов и т. д.

Решение второй задачи стало возможным в связи с появлением спектрального анализа и фотографии. Изучение физических свойств небесных тел началось во второй половине XIX века, а основных проблем — лишь в последние годы.

Третья задача требует накопления наблюдаемого материала. В настоящее время таких данных ещё недостаточно для точного описания процесса происхождения и развития небесных тел и их систем. Поэтому знания в этой области ограничиваются только общими соображениями и рядом более или менее правдоподобных гипотез.

Четвёртая задача является самой масштабной и самой сложной. Практика показывает, что для её решения уже недостаточно существующих физических теорий. Необходимо создание более общей физической теории, способной описывать состояние вещества и физические процессы при предельных значениях плотности, температуры, давления. Для решения этой задачи требуются наблюдательные данные в областях Вселенной, находящихся на расстояниях в несколько миллиардов световых лет. Современные технические возможности не позволяют детально исследовать эти области. Тем не менее, эта задача сейчас является наиболее актуальной и успешно решается астрономами ряда стран, в том числе и России.

 История астрономии

Основная статья: История астрономии

Ещё в глубокой древности люди интересовались движением светил по небосводу, хотя астрономия тогда была основательно перемешана с астрологией. Окончательное выделение научной астрономии произошло в эпоху Возрождения и заняло долгое время.

 

понедельник, 27 сентября 2010 г.

История космологии

Ранние формы космологии представляли собой религиозные мифы о сотворении (космогония) и уничтожении (эсхатология) существующего мира.
В китайской космологии считалось, что Земля — своего рода чаша, прикрытая небом, состоящая из полусфер, вращающихся на очень низком расстоянии от Земли.

 Античность

Большинство древнегреческих учёных поддерживали геоцентрическую систему мира, согласно которой в центре Вселенной находится неподвижная шарообразная Земля, вокруг которой обращаются пять планет, Солнце и Луна. Предложенная Аристархом Самосским гелиоцентрическая система мира, по видимому, не получила поддержки большинства древнегреческих астрономов.
Мир считался ограниченным сферой неподвижных звёзд[1]. Иногда добавлялась ещё одна сфера, отвечающая за прецессию. Предметом споров был вопрос о том, что находится за пределами мира: перипатетики вслед за Аристотелем полагали, что вне мира нет ничего (ни материи, ни пространства), стоики считали, что там находится бесконечное пустое пространство, атомисты (Левкипп, Демокрит, Метродор, Эпикур, Лукреций) полагали, что за пределами нашего мира находятся другие миры. Особняком стоят взгляды Гераклида Понтийского, согласно которому звёзды являются далёкими мирами, включающими в себя землю и воздух. Атомисты и Гераклид полагали Вселенную бесконечной. На закате античности появилось религиозно-мистическое учение герметизм, согласно которому вне мира может находится область нематериальных существ — духов[2].
Многие досократики полагали, что движением светил управляет гигантский вихрь, давший начало Вселенной. Oднaко после Аристотеля большинство античных астрономов считали, что планеты переносятся в своём движении материальными сферами, состоящими из особого небесного элемента — эфир, свойства которого не имеют ничего общего с элементами земли, воды, воздуха и огня, составляющих «подлунный мир». Широко было рапространено мнение о божественной природе небесных сфер или светал, их одушевлённости.

 Средневековье

В Средние века в астрономии и философии как христианских, так и мусульманских стран доминировала космология Аристотеля, дополненная птолемеевой теорией движения планет, вместе с представлением о материальных небесных сферах. Некоторые философы XIII—XIV вв. считали, что бесконечно всемогущий Бог мог создать, помимо нашего, и другие миры[3]; тем не менее, эта возможность считалась сугубо гипотетической: хотя Бог и мог создать другие миры, он не сделал этого. Некоторые философы (например, Томас Брадвардин и Николай Орем) считали, что за пределами нашего мира находится бесконечное пространство, служащее обителью Бога (модификация космологии герметистов, также полагавших внемировое пространство относящимся к духовной сфере[4]).

 Эпоха Возрождения

Новаторский характер носит космология Николая Кузанского, изложенная в трактате Об учёном незнании. Он предполагал материальное единство Вселенной и считал Землю одной из планет, также совершающей движение; небесные тела населены, как и наша Земля, причём каждый наблюдатель во Вселенной с равным основанием может считать себя неподвижным. По его мнению, Вселенная безгранична, но конечна, поскольку бесконечность может быть свойственна одному только Богу. Вместе с тем, у Кузанца сохраняются многие элементы средневековой космологии, в том числе вера в существование небесных сфер, включая внешюю из них — сферу неподвижных звёзд. Однако эти «сферы» не являются абсолютно круглыми, их вращение не является равномерным, оси вращения не занимают фиксированного положения в пространстве. Вследствие этого у мира нет абсолютного центра и чёткой границы (вероятно, именно в этом смысле нужно понимать тезис Кузанца о безграничности Вселенной)[5].
Первая половина XVI века отмечена появлением новой, гелиоцентрической системы мира Николая Коперника. В центр мира Коперник поместил Солнце, вокруг которого вращались планеты (в числе которых и Земля, совершавшая к тому же ещё и вращение вокруг оси). Вселенную Коперник по прежнему считал ограниченной сферой неподвижных звёзд; по видимому, сохранялась у него и вера в существование небесных сфер[6].
Модификацией системы Коперника была система Томаса Диггеса, в которой звёзды располагаются не на одной сфере, а на различных расстояниях от Земли до бесконечности. Некоторые философы (Франческо Патрицци, Ян Ессенский) заимствовали только один элемент учения Коперника — вращение Земли вокруг оси, также считая звёзды считались разбросанными во Вселенной до бесконечности. Воззрения этих мыслителей несут на себе следы влияния герметизма, поскольку область Вселенной за пределами Солнечной системы считалась ими нематериальным миром, местом обитания Бога и ангелов[7].

 Возникновение современной космологии

Возникновение современной космологии связано с развитием в XX веке Общей теории относительности Эйнштейна и физики элементарных частиц.
В 1922 А. А. Фридман предложил решение уравнения Эйнштейна, в котором изотропная вселенная расширялась из начальной сингулярности. Подтверждением теории нестационарной вселенной стало открытие в 1929 Э. Хабблом космологического красного смещения галактик. Таким образом, возникла общепринятая сейчас теория Большого Взрыва.

Комментариев нет:

Отправить комментарий