Сообщения.

Астрономия

Астроно́мия (др.-греч. ἀστρονομία, от ἄστρον — звезда и νόμος — закон) — наука о движении, строении и развитии небесных тел и их систем, вплоть до Вселенной в целом.[1] В частности, астрономия изучает Солнце, планеты Солнечной системы и их спутники, астероиды, кометы, метеориты, межпланетное вещество, звёзды и внесолнечные планеты (экзопланеты), туманности, межзвёздное вещество, галактики и их скопления, пульсары, квазары, чёрные дыры и многое другое.

2009 год был объявлен ООН Международным годом астрономии (IYA2009). Основной упор делается на повышении общественной заинтересованности и понимании астрономии.

Структура астрономии как научной дисциплины

Лунная астрономия: большой кратер на изображении — Дедал, сфотографированный экипажем Аполлона-11 во время обращения вокруг Луны в 1969. Кратер расположен рядом с центром невидимой стороны Луны, его диаметр около 93 км.
Внегалактическая астрономия: гравитационное линзирование. Это изображение показывает несколько голубых петлеобразных объектов, которые являются многократными изображениями одной галактики, размноженными из-за эффекта гравитационной линзы от скопления жёлтых галактик возле центра фотографии. Линза создана гравитационным полем скопления, которое искривляет световые лучи, что ведёт к увеличению и искажению изображения более далёкого объекта.

Современная астрономия подразделяется на ряд отдельных разделов, которые тесно связаны между собой, и такое разделение астрономии в известном смысле условно. Главнейшими разделами астрономии являются:

  • Астрометрия — изучает видимые положения и движения светил. На этапе исторического развития науки роль астрометрии долгое время состояла также в высокоточном определении географических координат и времени с помощью изучения движения небесных светил (в данный момент для того и другого существуют новейшие способы). Современная астрометрия состоит из:
    • фундаментальной астрометрии, задачами которой являются определение координат небесных тел из наблюдений, составление каталогов звёздных положений и определение числовых значений астрономических параметров, — величин, позволяющих учитывать закономерные изменения координат светил;
    • радиоастрономии
    • сферической астрономии, разрабатывающей математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем;
  • Теоретическая астрономия даёт методы для определения орбит небесных тел по их видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел по известным элементам их орбит (обратная задача).
  • Небесная механика изучает законы движений небесных тел под действием сил всемирного тяготения, определяет массы и форму небесных тел и устойчивость их систем.

Эти три раздела в основном решают первую задачу астрономии (исследование движения небесных тел), и их часто называют классической астрономией.

  • Астрофизика изучает строение, физические свойства и химический состав небесных объектов. Она делится на: а) практическую (наблюдательную) астрофизику, в которой разрабатываются и применяются практические методы астрофизических исследований и соответствующие инструменты и приборы; б) теоретическую астрофизику, в которой, на основании законов физики, даются объяснения наблюдаемым физическим явлениям.

Ряд разделов астрофизики выделяется по специфическим методам исследования.

  • Звёздная астрономия изучает закономерности пространственного распределения и движения звёзд, звёздных систем и межзвёздной материи с учётом их физических особенностей.

В этих двух разделах в основном решаются вопросы второй задачи астрономии (строение небесных тел).

  • Космогония рассматривает вопросы происхождения и эволюции небесных тел, в том числе и нашей Земли.
  • Космология изучает общие закономерности строения и развития Вселенной.

На основании всех полученных знаний о небесных телах последние два раздела астрономии решают её третью задачу (происхождение и эволюция небесных тел).

Курс общей астрономии содержит систематическое изложение сведений об основных методах и главнейших результатах, полученных различными разделами астрономии.

Одним из новых, сформировавшихся только во второй половине XX века, направлений является археоастрономия, которая изучает астрономические познания древних людей и помогает датировать древние сооружения, исходя из явления прецессии Земли.

 Звёздная астрономия

Планетарная туманность Муравья — Mz3. Выброс газа из умирающей центральной звезды показывает симметричную модель, в отличие от хаотических образов обычных взрывов.
Основная статья: Звезда

Изучение звёзд и звёздной эволюции имеет фундаментальное значение для нашего понимания Вселенной. Астрофизика звезд развивалась на основе наблюдений и теоретического понимания, а сейчас и с помощью компьютерного моделирования.

Формирование звезд происходит в областях плотной пыли и газа, известных как гигантские молекулярные облака. Если происходит дестабилизация, то фрагменты облака могут сжаться под воздействием гравитации и сформировать протозвезду. Достаточно плотные и горячие области вызовут термоядерные реакции, таким образом начнется главная последовательность звезды.[2]

Почти все элементы, более тяжелые чем водород и гелий, создаются внутри ядра звезды.

Задачи астрономии

Радиотелескопы среди множества различных инструментов, используемых астрономами.

Основными задачами астрономии являются:

  1. Изучение и объяснение видимых движений небесных тел, нахождение закономерностей и причин этих движений.
  2. Изучение строения небесных тел, их физических и химических свойств, построение моделей их внутреннего строения.
  3. Решение проблем происхождения и развития небесных тел и их систем.
  4. Изучение наиболее общих свойств Вселенной, построение теории наблюдаемой части Вселенной — Метагалактики.

Решение этих задач требует создания эффективных методов исследования — как теоретических, так и практических. Первая задача решается путём длительных наблюдений, начатых ещё в глубокой древности, а также на основе законов механики, известных уже около 300 лет. Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для сравнительно близких к Земле небесных тел: Луны, Солнца, планет, астероидов и т. д.

Решение второй задачи стало возможным в связи с появлением спектрального анализа и фотографии. Изучение физических свойств небесных тел началось во второй половине XIX века, а основных проблем — лишь в последние годы.

Третья задача требует накопления наблюдаемого материала. В настоящее время таких данных ещё недостаточно для точного описания процесса происхождения и развития небесных тел и их систем. Поэтому знания в этой области ограничиваются только общими соображениями и рядом более или менее правдоподобных гипотез.

Четвёртая задача является самой масштабной и самой сложной. Практика показывает, что для её решения уже недостаточно существующих физических теорий. Необходимо создание более общей физической теории, способной описывать состояние вещества и физические процессы при предельных значениях плотности, температуры, давления. Для решения этой задачи требуются наблюдательные данные в областях Вселенной, находящихся на расстояниях в несколько миллиардов световых лет. Современные технические возможности не позволяют детально исследовать эти области. Тем не менее, эта задача сейчас является наиболее актуальной и успешно решается астрономами ряда стран, в том числе и России.

 История астрономии

Основная статья: История астрономии

Ещё в глубокой древности люди интересовались движением светил по небосводу, хотя астрономия тогда была основательно перемешана с астрологией. Окончательное выделение научной астрономии произошло в эпоху Возрождения и заняло долгое время.

 

среда, 29 сентября 2010 г.

Астрофизика

Астрофи́зика (от греч. αστρον — «светило» и φύσις — «природа») — наука на стыке астрономии и физики, изучающая физические процессы в астрономических объектах, таких, как звёзды, галактики и т. д. Физические свойства материи на самых больших масштабах и возникновение Вселенной изучает космология.

Два представления оптического спектра: сверху «естественное» (видимое в спектроскопе), снизу — как зависимость интенсивности от длины волны. Показан комбинированный спектр излучения солнца. Отмечены линии поглощения бальмеровской серии водорода.
Астрофизика — учение о строении небесных тел. Астрофизика есть таким образом часть астрономии, занимающаяся изучением физических свойств и химического состава Солнца, планет, комет или неподвижных звёзд и туманностей. Главные экспериментальные методы астрофизики: спектральный анализ, фотография и фотометрия вместе с обыкновенными астрономическими наблюдениями. Спектроскопический анализ составляет область, которую правильнее было бы назвать астрохимией, химией небесных тел, так как главные указания, даваемые спектроскопом, касаются химического состава изучаемых астрономических объектов. Фотометрические и фотографические исследования выделяются иногда в особые области астрофотографии и астрофотометрии. Астрофизику не следует смешивать с физической астрономией, каковым именем принято означать теорию движения небесных тел, то есть то, что также носит название небесной механики. К Астрофизике относят также исследование строения поверхности небесных тел, специально Солнца и планет, насколько это возможно из телескопических наблюдений над этими телами. А. есть ещё совершенно юная наука. Самое название её существует только с 1865 и предложено Цельнером. Астрофизические обсерватории существуют ещё только в очень немногих странах. Из них особенно знамениты Потсдамская обсерватория под управлением Фогеля и Медонская под управлением Жансена. В Пулкове также устроено астрофизическое отделение, во главе которого стоит Гассельберг. В настоящей статье мы изложим историю и главные результаты астроспектроскопии, или того отдела Астрофизики, который состоит из приложения спектрального анализа к изучению небесных тел.
Спиральная галактика M 81
Внегалактическая астрономия: гравитационное линзирование. Это изображение показывает несколько голубых петлеобразных объектов, которые являются многократными изображениями одной галактики, размноженными из-за эффекта гравитационной линзы от скопления жёлтых галактик возле центра фотографии. Линза создана гравитационным полем скопления, которое искривляет световые лучи, что ведёт к увеличению и искажению изображения более далёкого объекта.
Первые исследования спектра Солнца были предприняты одним из изобретателей спектрального анализа, Кирхгофом, в 1859 г. Результатом этих исследований был рисунок солнечного спектра, из которого можно было определить уже с большою подробностью химический состав солнечной атмосферы. Раньше Кирхгофа высказывались только иногда отдельные предположения о возможности анализа солнечной атмосферы посредством спектроскопа и в особенности о существовании на Солнце натрия вследствие найденной в спектре его тёмной линии D натрия. Такие предположения высказывались, напр., Фуко в Париже, Стоксом в Кембридже. Между тем ещё незадолго до этого Огюст Конт высказал в своей «Положительной философии» убеждение в невозможности когда бы то ни было узнать химический состав небесных тел, хотя уже в 1815 г. Фраунгофер знал о существовании тёмных линий в спектре Солнца и о существовании характеристических спектров у некоторых отдельных звёзд Сириуса, Капеллы, Бетельгейзе, Проциона, Поллукса. После первых исследований Кирхгофа спектральным анализом небесных тел занялись с большим усердием несколько астрофизиков, которые вскоре представили чрезвычайно обстоятельные исследования спектров Солнца и неподвижных звёзд. Ангстром (вернее, Онгстром) изготовил чрезвычайно точный атлас солнечного спектра, Секки произвёл обозрение большого числа звёзд посредством спектроскопа и установил четыре типа звёздных спектров, Геггинс начал ряд исследований над спектрами отдельных ярких звёзд. Область применения спектроскопа постепенно расширялась. Геггинсу удалось наблюдать спектр некоторых туманностей и подтвердить уже неопровержимым образом предположение о существовании двух типов туманностей — звёздных, состоящих из куч звёзд, которые при достаточной оптической силе инструмента могут быть разложены на звёзды, и газообразных, действительных туманностей, относительно которых можно думать, что они находятся в фазе образования отдельных звёзд путём постепенного сгущения их вещества. С середины 60-х годов изучение поверхности Солнца посредством спектроскопа во время затмений и вне их вошло в состав непрерывных наблюдений, производящихся в настоящее время во многих обсерваториях. Геггинс, Локьер в Англии, Жансен во Франции, Фогель в Германии, Таккини в Италии, Гассельберг в России и др. дали обширные исследования, уяснившие строение верхних слоёв солнечной атмосферы (см. Солнце). В то же время с 1868 года по мысли Геггинса спектроскоп был применён и к исследованию собственных движений звёзд по направлению луча зрения посредством измерения перемещений линий их спектров измерения, которые в настоящее время также производятся систематически в Гринвичской обсерватории. Принцип Доплера, лежащий в основании этих измерений, был уже несколько раз проверяем экспериментально измерениями перемещений солнечного спектра и послужил Локьеру в его измерениях перемещений различных линий спектра Солнца к установлению его гипотезы о сложности химических элементов. Спектры комет, падающих звёзд, метеоритов, исследованные разными астрономами, а в последнее время в особенности Локьером, дали уже много весьма важных фактов в руки астроному и в значительной степени послужили к уяснению происхождения и развития звёзд и солнечной системы. А. шагает, именно в настоящее время, большими шагами вперёд, и следует думать, что в ближайшем будущем раскрытые ею факты послужат к установлению более полной космогонической теории, чем та, которая передана нам предыдущими поколениями.

Комментариев нет:

Отправить комментарий